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Dipartimento di Fisica, Università di Roma “La Sapienza”, Istituto Nazionale Fisica della Materia, Unità di Roma, and SMC,
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Abstract. Some questions concerning the calculation of the number of “physical” (metastable) states or
complexity of the spherical p-spin spin glass model are reviewed and examined further. Particular attention
is focused on the general calculation procedure which is discussed step-by-step.

PACS. 75.10.Nr Spin-glass and other random models – 02.30.Mv Approximations and expansions

1 introduction

The analysis of the equilibrium and non-equilibrium prop-
erties in terms of the energy landscape originally pushed
forward for the structural glass transition [1], has risen in
the recent years a new interest on the topological proper-
ties of the energy or free-energy landscapes of disordered
and complex systems. In this approach an important the-
oretical tool is the logarithm of the number of metastable
states, called complexity or configurational entropy, iden-
tified as basins or valleys on the landscape.

Solvable models, such as mean-field models, have al-
ways played an important role in the theoretical study
of physical problems. In this context classical calcu-
lations [2,3] for the complexity of the Sherrington-
Kirkpatrick [4] (SK) and other disordered spin models
have been reconsidered, extended and in some cases criti-
cized [5–9].

Motivated by these criticisms, in this paper some ques-
tions concerning the calculation of the complexity of dis-
ordered spin systems are reviewed and examined further
in a solvable model, the spherical p-spin spin glass (pSP-
SG) model introduced by Crisanti and Sommers [10]. The
aim of the paper is not the calculation of the complexity
for the spherical pSP-SG model, which has been computed
in references [11–13], but the procedure of calculation it-
self to clarify known results which could be useful for the
understanding of the complexity of other systems. The
spherical pSP-SG model is only used to enlighten subtle
points of the procedure. We have tried to make the paper
almost self-contained so that it can also be used by read-
ers interested into the problem but not too familiar with
all reported results.

The general approach to the calculation of complexity
in mean-field spin glass model is discussed in Section 2.
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The procedure is illustrated in Section 4 using the spheri-
cal pSP-SG model introduced in Section 3. The correctness
the procedure is discussed in Section 5. Finally Section 6
contains some conclusions and discussion.

2 How to compute the complexity

The metastable states in mean-field spin models are more
easily studied using the Thouless-Anderson-Palmer (TAP)
method [14], which introduces a mean-field free energy
functional FTAP(m) of the local magnetizations m = (m1,
m2, . . . , mN ), where N is the number of spins. At any
temperature T the metastable states of the system are
identified with the local minima of FTAP(m), i.e., with
the solutions of

∂miFTAP(m) = 0, i = 1, . . . , N (1)

with the additional requirement that all eigenvalues of
the matrix ∂mi∂mj FTAP(m) evaluated on the solution are
positive. At the mean-field level different local minima are
separated by infinite barriers, therefore the system cannot
escape from a local minimum in a finite time and hence
the minimum (and its basin of attraction) is a metastable
state of infinite life-time. However, despite this simple in-
tuitive picture, not all minima of FTAP(m) can be asso-
ciated with physical metastable states but only those for
which (Plefka’s criterion) [14–16]

xP = 1 − c(q)
N

N∑
i=1

(
1 − m2

i

)2 ≥ 0 (2)

where β = 1/T and c(q) is a function of q = (1/N)
∑

i m2
i

whose form depends on the interactions. For example for
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the SK model c(q) = β2 [14–16], while for p-spin inter-
action models c(q) = (β2p/2)(p − 1)qp−2 [17]. This con-
dition guarantees that TAP solutions display a physical
local susceptibility equal to β(1− q). In conclusion within
this approach the calculation of the number of metastable
states is reduced to that of counting the number of solu-
tions of (1) which are minima and satisfies the Plefka’s
criterion (2) (“physical” minima). If it were found that
physical minima must satisfy additional constraints, those
must also be included.

Different physical minima may have different free-
energy density, thus to have a better description of
metastable states one can group together all minima with
the same free-energy density and introduce the func-
tion ρ(f) which gives the number of metastable states
with FTAP(m) = Nf . The configurational entropy is then
defined as:

Σ(f) =
1
N

ln ρ(f). (3)

We are eventually interested into the large N limit,
thus Σ(f) is different from zero only if the number of
physical minima with free energy density f is exponen-
tially large with N .

If we label the Nsol solutions of the TAP equation (1)
with the subscript α (α = 1, . . . ,Nsol) by definition ρ(f)
is given by

ρ(f)
def
=

Nsol∑
α=1

N∏
i=1

[∫
dmi θ(λα

i ) δ(mi − mα
i )
]

× θ(xα
p ) δ [FTAP(m) − Nf ] (4)

where λα
i (i = 1, . . . , N) are the eigenvalues of the Hessian

matrix for the αth solution:

χα
ij = ∂mi∂mj FTAP(m)

∣∣
m=mα (5)

and θ(x) is the Heaviside theta-function. As it stands (4)
is difficult to handle, however using the properties of delta-
function it can be transformed into the more manageable
form:

ρ(f) =
N∏

i=1

[∫
dmi θ(λi) δ [∂miFTAP(m)]

]
× det(χ(m)) θ(xP) δ [FTAP(m) − Nf ] (6)

where χ(m), the Hessian matrix (5) evaluated for a
generic m, is the Jacobian of the transformation and λi

are its eigenvalues. The theta-functions ensure that the
determinant of χ is always positive and we have neglected
the absolute value of the Jacobian.

In addition to (4) we consider the definition without
the theta-functions, which we denote by ρtot(f), which
counts the total number of TAP solutions. The effect of the
theta-functions is to eliminate all solutions with at least
one negative eigenvalue, therefore the meaning of ρtot(f)
is not exactly the same as that of ρ(f) since all solutions
are now counted. There is just one case in which the two
formulations, at least in the limit of our interest, N � 1,

are indeed equivalent: if for large N the two integral –
with and without theta-functions – are dominated by the
same set of solutions, an assumption that must be verified
in each case (and for each value of f) separately.

Keeping the sum over all solutions is not, however,
completely free of difficulties: since all solutions are
counted the determinant of the Jacobian can be negative
and the absolute value must be retained making the sub-
sequent calculation more problematic. To overcome this
difficulties the absolute value is simply dropped leading
to expression:

ρ̃(f) =
N∏

i=1

[∫
dmi δ [∂miFTAP(m)]

]
× det(χ(m)) δ [FTAP(m) − Nf ] , (7)

and arguments are given to justify under which circum-
stances this reproduces the correct result with the absolute
value.

We have to compare ρ̃(f) given by (7) with ρ(f). The
question is when ρ̃(f) yields the same result as ρ(f). The
main difference between (6) and (7) is the support of
the integrals, larger for the latter, hence the two expres-
sions are equivalent if the integrals are dominated by the
same support. Thus, to extract from ρ̃(f) the correct re-
sult for ρ(f) we should be able to isolate the contributions
from the common support. For a generic value of N this
could be quite a hard problem. However, in the limit of
large N where the integrals are evaluated by saddle point
methods, a simple rule can be applied.

In this case ρ(f) can be evaluated simply considering
only the stationary points for which all eigenvalues of the
Hessian are positive and the Plefka’s criterion is satisfied,
disregarding all others. We stress that such constraint is
not contained into ρ̃(f), so that the functional alone can-
not give the desired result.

In the next sections we shall illustrate this proce-
dure (re)computing the complexity for the spherical pSP-
SG model without external field [11] using both expres-
sions (7) and (6).

3 TAP Equations for the spherical pSP-SG
model

The spherical pSP-SG model consists of N continuous
spins σi interacting via p-body interactions [10]:

H(σ) =
r

2

N∑
i=1

σ2
i −

∑
1≤i1<···<ip≤N

Ji1,...,ip σi1 · · ·σip . (8)

The couplings are quenched independent Gaussian vari-
ables with zero mean and average 〈(Ji1,...,ip)2〉 =
p!/(2Np−1). The scaling with N ensures a well defined
thermodynamic limit. Here and in the following 〈(· · · )〉
denotes disorder average. The parameter r is a Lagrange
multiplier to impose the global constraint

∑N
i=1 σ2

i = N
on the spins amplitude.



A. Crisanti et al.: The complexity of the spherical p-spin spin glass model, revisited 131

The study of both the static and dynamical proper-
ties shows that in the thermodynamic limit the model
presents a (static) transition at a temperature Ts, be-
tween a high temperature replica symmetric phase and
a low temperature phase with one step of replica sym-
metry breaking [10]. Despite its simplicity, the spherical
pSP-SG model for p > 2 has an exponentially large num-
ber of locally stable states which dominate the dynamical
behavior above Ts. As a consequence, two-time correlation
functions acquire a time persistent part at a temperature
Td > Ts which marks the dynamical transition [18]. The
static transition can be seen as the point where the low-
est accessible (metastable) states dominate. The dynam-
ical transition, on the contrary, takes place at the point
where the behavior is ruled by higher, highly degenerate,
metastable states.

The TAP functional has been derived in refer-
ences [11,19]:

βFTAP(m) = − β

p!

∑
i1,...,ip

Ji1,...,ip mi1 · · ·mip

− N

2
ln(1 − q)

− Nβ2

4
[
1 + (p − 1)qp − pqp−1

]
(9)

where Nq =
∑

m2
i , and taking the derivatives with re-

spect to mi one obtains the TAP equations.
The structure of the solutions is better understood per-

forming the change of variable mi = q1/2m̂i (
∑

m̂2
i = N)

which leads to TAP functional density:

fTAP(q, E) = qp/2 E − T

2
ln(1 − q)

− β

4
[
1 + (p − 1)qp − pqp−1

]
(10)

where E = −(1/Np!)
∑

Ji1,...,ipm̂i1 · · · m̂ip is the T = 0
energy density. In general, E is a random variable which
depends on both the realization of couplings and on the
orientation of the vector m. However all cases with the
same value of E will also have the same free energy,
thus we can consider E as given and study the solutions
as a function of E. The TAP equations then reduce to
∂qfTAP(q, E) = 0 which can be written:

(1 − q) qp/2−1 = zT (11)

where

z =
1

p − 1

[
−E ±

√
E2 − E2

c

]
, (12)

Ec = −
√

2 (p − 1)/p. (13)

It is easy to understand that for any positive z and tem-
perature T below

Ta = (1 − qa) qp/2−1
a z−1 (14)

where qa = (p − 2)/p, there are two solutions of the TAP
equation (11), one larger and one smaller than qa. Anyway,

possible candidates for physical solutions are only those
which are local minima of fTAP(q, E).

By using the TAP equation (11) the second derivative
of fTAP(q, E) with respect to q evaluated on the solutions
can be expressed as

∂2
q fTAP(q, E) =

p

4βq

[
q − p − 2

p

]
×
[

1
(1 − q)2

− µ(p − 1)qp−2

]
=

p

4βq

[
q − p − 2

p

]
z2
c − z2

z2
c

(15)

where zc =
√

2/p(p − 1) and µ = β2p/2. The requirement
of positiveness of the second derivative thus selects the
solutions

q <
p − 2

p
for z > zc (16)

q >
p − 2

p
for z < zc. (17)

By comparing the two expressions in (15) we see that the
condition z < zc is equivalent to

xP = 1 − µ(p − 1)qp−2 (1 − q)2 > 0 (18)

which also follows from the stability requirement of the
replica saddle point [10] and of the dynamics [18]. This is
the Plefka’s criterion (2) for the physical relevance of TAP
solutions [15] for the spherical pSP-SG model. Indeed it
can be easily seen that the condition (16), for which xP <
0, leads to an unphysical q decreasing with temperature.

4 Complexity of the spherical pSP-SG model:
standard calculation

In this section we report the main steps of the calcula-
tion of ρ̃(f) for the spherical pSP-SG model. Details can
be found in the literature, see e.g. references [2,3] and
for the specific case of the p-spin spin glass model refer-
ences [11,13,20].

The starting point is (cf. (7))

ρ̃(f) = N2

∫ 1

0

dq

N∏
i=1

[∫ +∞

−∞
dmi δ(Gi)

]
detA

× δ

(
Nq −

∑
i

m2
i

)
δ [FTAP(m) − Nf ] (19)

with

Gi = ∂miβfTAP(m)

= a(q)mi − β

(p − 1)!

∑
j

Ji,j mp−1 (20)
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and

Aij =∂mj Gi

=a(q) δij − β

(p − 2)!

∑
k

Jij,k mp−2

+
2
N

a′(q)mi mj (21)

where
a(q) =

1
1 − q

+ µ(p − 1)(1 − q)qp−2 (22)

a′(q) = da(q)/dq and we have used the short-hand nota-
tion:∑

j

Ji,j mp−1 def
=

∑
k1,...,kp−1

Ji,k1,...,kp−1 mk1 · · ·mkp−1

(23)
and similarly in (21). The last term of A is of or-
der O(1/N), and can be neglected for N → ∞ (see also
below).

The structure of the minima is given by the couplings,
therefore ρ̃(f) (and so ρ(f)) may change from sample to
sample. Thus, in principle, to have a well defined complex-
ity we should introduce replicas to compute 〈ln ρ̃(f)〉 [21].
However it can be shown [11,12] that for this model, in
absence of a magnetic field, the annealed average ln〈ρ̃(f)〉
is exact, so we can just average (19) over the disorder.

To perform the average over the couplings it is con-
venient to use the integral representation of the delta-
function to exponentiate its argument. This introduces
additional parameters which are usually denoted by f̂ ,
q̂ and m̂i [22] conjugated to f , q and Gi and the ad-
ditional variable ∆ coming from Hubbard-Stratonovich
transformation. The calculation can be further simplified
by substituting

∑
Ji1,...,ip mi1 · · ·mip from equation (20)

in FTAP(m) (Eq. (9)) and noticing that the error involved
in disorder-averaging the determinant of A separately ac-
counts for changing A of terms of order O(1/N) and hence
negligible as N → ∞ [2,20].

Performing the averages over the couplings results in

〈ρ̃(f)〉 = c

∫ +∞

−∞
df̂

∫ 1

0

dq

∫ +∞

−∞
dq̂

∫ +∞

−∞
d∆eN Σ (24)

where c is a constant and

Σ = iβf̂
[
f − f(q)

]
+ iq̂q − ∆(1 − q)

− 1
λ

∆2 + ln I + Gxp(q) (25)

with f(q) the TAP density functional fTAP(m) evaluated
on the solution of the TAP equation (20):

f(q) = −β

4
(1 − qp) − β

4
(p − 2)(1 − q)qp−1

− q T

p (1 − q)
− T

2
ln(1 − q), (26)

I =
∫ +∞

−∞

dm dm̂

2π
exp

{µqp−1

2
(im̂)2

+ im̂

(
1

1 − q
− ∆

)
m − iq̂m2

}
. (27)

and λ = 2µ(p − 1)qp−2.
The function GxP(q) comes from the average of the de-

terminant of A which can be computed either using Grass-
mann variables [3] or introducing replicas [2,20]. The form
depends on the sign of xP (Eq. (18)) [23]:

GxP(q) = − ln(1 − q), for xP > 0 (28)

this is B = 0 solution always adopted in standard calcu-
lations e.g. in [2,5,20] and

GxP =
1

λ (1 − q)2

[
1 − λ2

4
(1 − q)4

]
+ ln

λ

2
(1 − q), for xP < 0. (29)

The two expressions coincide for xP = 0, i.e. for λ/2 =
1/(1− q)2. Details of the calculation can be found in Ap-
pendix A.

Integration over m̂, m, q̂, ∆ can be done by the saddle
point method [24], which turns out to be exact for the
integrals over m̂, m, ∆ being Gaussian, while the integral
over f̂ can be easily performed giving a delta-function.
The final results is then

〈ρ̃(f)〉 ∼ c′
∫ 1

0

dq δ
[
f(q) − f

]
eN Σ(q)

∼ eN Σ(q∗), N → ∞ (30)

where

Σ(q) = Gxp(q) +
1
2

+
1
2

ln q − 1
2

ln(µqp−1)

+
p − 1

2µpqp−2

[
1

1 − q
− µ(1 − q)qp−2

]2

− 1
2µ(1 − q)2qp−2

.

(31)

and q∗ = q∗(f) is the solution of

f(q) = f (32)

which gives the largest value of Σ(q) [25].
The simplest way of studying the solution is using q

as a free parameter to scan all values of f . This is
what is done, for example, in reference [11] where the re-
sult (31–32) was first derived.

The solutions of equation (32) can be found using the
results of Section 3. The free energy f(q) as function of q
for all stationary points of fTAP(q, E) is shown in Fig-
ure 1 for p = 4 and temperature T between the static
transition temperature Ts and the dynamical transition
temperature Td. Other values of p or T in this range lead
to a qualitatively same picture. The corresponding Σ(q∗)
as function of f is shown in Figure 2.
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Fig. 1. Free energy density f(q) as function of q for p = 4 and
temperature T = 0.51 between the static transition tempera-
ture Ts = 0.5030... and the dynamical transition temperature
TD = 0.5443... Thicker lines correspond to solutions for which
the Plefka’s criterion is satisfied, while full lines correspond
to solution for which (15) is positive, i.e., to local minima of
fTAP(q, E). Only the full thick line (last sector to the right) is
relevant for the calculation of the number of metastable states,
i.e., states which are both minima and have xp > 0.

Strictly speaking to evaluate 〈ρ̃(f)〉 we should take for
each value of f the largest value of Σ, and compute the
sign of the neglected coefficient in (30). However, one is ac-
tually interested into the number of metastable states, so
in all calculations done so far all solutions with xp < 0 are
cut out, the “famous” B = 0 solution. Even if not explic-
itly stated, this is in the spirit of the procedure described
in Section 2. We stress, however, that if the procedure is
the same the motivations are not. Indeed the B �= 0 solu-
tion can also describe minima of the TAP functional but
such configurations violate the Plefka criterion (xp < 0),
thus leading to a non-physical linear susceptibility.

If the xp < 0 solutions are disregarded, we are left with
the curves shown in Figure 3 corresponding to the solution
of the TAP equations with q < (p−2)/p (dashed line) and
q > (p − 2)/p (full line). Again, if no other information is
added, for each f the largest value must be selected to
evaluate Σ(f). This means that there is a region of free
energies where Σ(f) is dominated by solutions with q <
(p−2)/p. But these are not local minima of fTAP, see (15),
and hence for these free energies Σ(f) does not give the
desired result. This clearly shows that the condition xp >
0 alone does not guarantees that only physical states are
counted. To find the correct answer additional information
on the solutions must be added.

For the spherical pSP-SG this information is easily
obtained. Indeed, the analysis of the TAP solutions in
Section 3, shows that only solutions with xp > 0 and
q > (p− 2)/p do correspond to metastable states, so only
the full line in Figure 3 must be considered. This leads to
the result first derived in reference [11].

To conclude this section we note that for the pSP-
SG model, using the TAP equation (11) Σ(f), can be
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Fig. 2. Σ(q∗) as as function of f for p = 4 and tem-
perature T = 0.51 between the static transition tempera-
ture Ts = 0.5030... and the dynamical transition temperature
TD = 0.5443... Thicker lines correspond to solutions for which
the Plefka’s criterion is satisfied, while full lines correspond
to solution for which (15) is positive, i.e., to local minima of
fTAP(q, E). Only the full thick line is relevant for the calcula-
tion of the number of metastable states, i.e., states which are
both minima and have xp > 0. In the figure only values of f
for which Σ > 0 are reported.
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Fig. 3. Same as Figure 2 where only solutions satisfying the
Plefka’s criterion are displayed. The full line is the result found
in reference [11].

rewritten as a function of z only:

Σ+(z) =
1
2

[
2 − p

p
− ln

pz2

2
+

p − 1
p

z2 − 2
p2z2

]
(33)

for xP > 0 [11], and

Σ−(z) = Σ+(z) + ln
[
p(p − 1)

2
z2

]
+

1
p(p − 1)z2

[
1 − p2(p − 1)2z4

4

]
(34)
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for xP < 0. As a consequence the number of solutions
in each sector xp > 0 ans xp < 0 is conserved under
temperature changes.

5 Complexity of the spherical pSP-SG model:
Hessian eigenvalues

In the previous section we have revised step-by-step the
standard calculation of the complexity for the spherical
pSP-SG model showing which additional information, not
included into the definition of ρ̃(f), must be added to yield
the correct answer. In this section we show that the ad-
ditional information is exactly the theta-functions needed
to transform ρ̃(f) into ρ(f), see equations (6) and (7).

To prove the equivalence we must compute the eigen-
values λi of the Hessian matrix (5) that for the spherical
pSP-SG model is given by (21).

The eigenvalues are solutions of the equations∑
j

Aij ξj =a(q) ξi + 2 q a′(q) m̂i
1
N

∑
j

m̂j ξj

− β q(p−2)/2

(p − 2)!

∑
j,k

Jij,k m̂p−2 ξj

=λ ξi. (35)

There are two classes of eigenvectors ξi: longitudinal
and transversal.

5.1 Longitudinal eigenvector

The longitudinal eigenvector is given by:

ξi ∝ m̂i, ∀i (36)

and hence satisfies the equation:

[a(q) + 2 q a′(q)] m̂i − β q(p−2)/2

(p − 2)!

∑
j

Ji,j m̂p−1 = λL m̂i.

(37)
Since the Hessian must be evaluated on the solution of the
TAP equation (1), we can use (20) to write

β q(p−2)/2
∑

j

Ji,j m̂p−1 = a(q) (p − 1)! m̂i (38)

which inserted into (37) leads to

λL = 2 q a′(q) − (p − 2) a(q)

= p

[
q − p − 2

p

] [
1

(1 − q)2
− µ(p − 1)qp−2

]
. (39)

The longitudinal eigenvalue is therefore, apart from posi-
tive multiplicative coefficients, equal to ∂2

qfTAP(q, E) eval-
uated in Section 3 (Eq. (15)). The different coefficients
come from the derivative being taken with respect to q or
to mi. The longitudinal eigenvalue has degeneracy 1.

Note that the term of O(1/N) in (21) yields a contri-
bution of O(1) for longitudinal eigenvectors and cannot
be neglected [15].

5.2 Transversal eigenvectors

Transversal eigenvectors satisfy the orthogonality condi-
tions: ∑

i

ξi m̂i = 0 (40)

and hence span a space of dimension N −1. The eigenval-
ues equation for transversal eigenvectors can be written as

a(q) ξi −
∑

j

J̃ij ξj = λT ξi (41)

J̃ij = β q(p−2)/p
∑

k1<···<kp−2

Jij,k1,...,kp−2 m̂k1 · · · m̂kp−2 .

(42)
For large values of N J̃ij is a symmetric random matrix
whose elements are independent Gaussian variables with
zero average and variance:

〈(J̃ij)2〉 =
µ(p − 1)qp−2

N
. (43)

Therefore for N → ∞ the spectrum of J̃ij is given by the
Wigner’s semicircular law [13,26]:

ρ(λT) =
1

2πµ(p − 1)qp−2

×
√

4µ(p − 1)qp−2 − [λT − a(q)]2. (44)

This gives a spectrum at the leading order in N , dis-
playing a non negative support. Since it can be shown
that the tails of this distribution go to zero exponen-
tially with N [26] we can safely exclude negative eigen-
values. The thermodynamic limit transversal fluctuations
are, thus, always stable, regardless of the sign of xP and
the whole stability depends on the longitudinal eigenvalue.
Note, however, that the N−1 transversal eigenvalues dom-
inate the calculation of

detA = exp (Tr lnA) for N → ∞ (45)

and any information from the longitudinal eigenvalue is
washed out when computing ρ̃(f).

In conclusion we see that the procedure described in
Section 2 of selecting the saddle point solutions of ρ̃(f)
according to their physical relevance obtained from the
(independent) analysis of the TAP equations produces the
correct result for the complexity.

6 Conclusion and discussion

The study of the complex behavior of glassy systems in
terms of the topological properties of the energy or free-
energy surfaces has recently put new interest into the cal-
culation of the number of metastable states, also called
complexity or configurational entropy, in mean-field spin
glass models. In this context classical calculations done
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for the SK and other disordered spin models have been
reconsidered, extended and also criticized [5–8].

Motivated by these controversies in this paper we have
reviewed and examined further some questions concern-
ing the calculation of the complexity of disordered sys-
tems. Particular care has been taken to distinguish be-
tween what we would like to compute, ρ(f), and what we
are able to compute, ρ̃(f). We have also discussed how
information on ρ(f) can be extracted, at least in the ther-
modynamic limit.

The general approach has been illustrated using the
spherical pSP-SG model, showing the correctness of the
reduction procedure. As by-product we have explicitly
shown that the Plefka criterion separates all solutions of
the TAP equations into two classes, both containing lo-
cal minima as well as saddles. However, only local min-
ima which satisfy the Plefka criterion do represent phys-
ical states. The Plefka’s criterion is indeed a necessary,
but not sufficient, condition for physical states, and hence
cannot be used alone for the reduction procedure but the
requirement of local stability must be added.

In reference [5] the classical calculation of Bray
and Moore [2] and DeDominicis and Young [3] for the
SK model have been critically revised. The main crit-
icism steams from the observation that ρ̃(f) (identified
with ρ(f) in those papers) can be written as saddle point
calculation over a functional which posses a supersym-
metry between commuting and anti-commuting variables
used to express the Jacobian in (7) [27]. The classical solu-
tion breaks this symmetry and in reference [5] a different,
supersymmetric solution was proposed.

In a separate paper [6] we have performed a careful
analysis of both the classical and the new supersymmetric
solutions. The outcome is that both solutions have some
limitations. For example, the neglected prefactor could be
exponentially small in N for the classical solution chang-
ing its prediction [6,28]. On the other hand the supersym-
metric solution has a negative xp, while it is positive for
the classical solution. This may suggest the correctness of
the classical solution over the supersymmetric one. How-
ever, as we have explicitly shown here for the spherical
pSP-SG model, this condition is not a sufficient condi-
tion. In order to prove the correctness of the solution one
should prove that it corresponds to a physical (stable)
state. A rather difficult problem already at the annealed
(replica symmetric) level used in these calculations. A step
in this direction has been recently done in the paper by
Aspelmeier, Bray and Moore [29] where the Hessian of the
fluctuations for the SK model are studied following the
same line discussed here. Moreover, since it is known that
a (marginally) stable solution for the SK model requires
an infinite-number of replica symmetry breakings, the re-
quirement of local stability may partially or totally wash-
out the results from the annealed approximation. A com-
plete calculation of the complexity of the SK model must
include full replica-symmetry breaking, making not only
the calculation but also the analysis of the saddle points
more difficult [7–9,21]. Supersymmetry requirements in-
troduce partial simplifications, since they lead to a connec-

tion between the complexity and the replica calculation.
However, we stress that supersymmetry is not an a priori
requirement for the complexity. Indeed, while ρ̃(f) is su-
persymmetric, the reduction procedure needed to go from
ρ̃(f) to ρ(f) may destroy the supersymmetry, so that su-
persymmetry must be proved case by case.

It can be shown, see [5,6,12], that under rather broad
assumptions, the supersymmetry leads to relations among
the order parameters of the complexity functional reduc-
ing the number of independent parameters. For the pSP-
SG model discussed here it is possible to describe the
whole complexity by means of just one parameter, sug-
gesting that the supersymmmetry is unbroken. A direct
calculation [12] shows that this is indeed the case. We
refer the interested reader to the cited papers for more
details on this point.

Appendix A

Here we calculate 〈detA〉 for N → ∞ using the identity
(see, e.g., Ref. [27])

detA =
∫ N∏

i=1

dηi dη+
i exp

∑
ij

η+
i Aijηj

 (46)

where ηi and η+
i are anti-commuting (Grassmann) vari-

ables. From equation (21) we have

〈det A〉 =
∫ N∏

i=1

dηi dη+
i exp

(
a(q)

∑
i

η+
i ηi

)

×
∏

i1<···<ip

〈
exp

[
− β

(p − 2)!
Ji1,...,ip

×
∑

π

η+
π(i1)ηπ(i2)mπ(i3) · · ·mπ(ip)

]〉

=
∫ N∏

i=1

dηi dη+
i exp

(
a(q)

∑
i

η+
i ηi

)

×
∏

i1<···<ip

exp

[
µ

2Np−1

p!(p − 1)!
(p − 2)!2

×
∑

π

η+
π(i1)ηπ(i2)mπ(i3) · · ·mπ(ip)

× η+
i1

ηi2mi3 · · ·mip

]
(47)

where
∑

π is a sum over all permutations of p different
integers i1, . . . , ip. When the products are expanded only
terms which contain pairs of η+

i ηi with the same index
survive. Since since there are (p−2)! terms with the same
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pairs of Grassmann variables, we end up with

〈detA〉 =
∫ N∏

i=1

dηi dη+
i exp

(
a(q)

∑
i

η+
i ηi

)

× exp

[
µ

2Np−1

p!(p − 1)!
(p − 2)!

×
∑

i1<···<ip

η+
i1

ηi1η
+
i2

ηi2m
2
i3 · · ·m2

ip

]

=
∫ N∏

i=1

dηi dη+
i exp

a(q)
∑

i

η+
i ηi

+
µ(p − 1)

2N
qp−2

(∑
i

η+
i ηi

)2
 (48)

where we have used Nq =
∑

i m2
i . The square in the expo-

nential can be open using a Stratonovich-Hubbard trans-
formation. The resulting expression is diagonal in η+

i ηi

and the integral over the Grassmann variable can be eas-
ily done. After a simple algebra we get

〈detA〉 =
∫ +∞

−∞

dz√
2πσ2(q)/N

× exp N

[
− z2

2σ2(q)
+ ln(a(q) + iz)

]
(49)

where σ2(q) = µ(p−1)qp−2. Finally performing the change
of variable iz + (1 − q)σ2(q) = ix we end up with [30]:

〈detA〉 =
exp

(
σ2(q)(1−q)2

2

)
√

2πσ2(q)/N

∫ +∞

−∞
dxeNG(x) (50)

G(x) = − x2

2σ2(q)
− ix(1 − q) + ln

(
1

1 − q
+ ix

)
. (51)

For N → ∞ the integral can be done by saddle point
method:

dG(x)
dx

= x

[
(1 − q)2

1 + ix(1 − q)
− 1

σ2(q)

]
= 0 (52)

which admits two solutions: x = 0 and x �= 0. Stability
requires that the saddle point be a maximum:

d2G(x)
dx2

=
(1 − q)2

[1 + ix(1 − q)]2
− 1

σ2(q)
< 0. (53)

For the x = 0 solution this implies that (cf. Eq. (18))

xP = 1 − σ2(q)(1 − q)2 > 0 (54)

and G(x) reduces to (28).
It is easy to see that the x �= 0 solution is stable only if

xP = 1 − σ2(q)(1 − q)2 < 0 (55)

in which case G(x) reduces to (29).
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